46 research outputs found

    Fusing Continuous-valued Medical Labels using a Bayesian Model

    Full text link
    With the rapid increase in volume of time series medical data available through wearable devices, there is a need to employ automated algorithms to label data. Examples of labels include interventions, changes in activity (e.g. sleep) and changes in physiology (e.g. arrhythmias). However, automated algorithms tend to be unreliable resulting in lower quality care. Expert annotations are scarce, expensive, and prone to significant inter- and intra-observer variance. To address these problems, a Bayesian Continuous-valued Label Aggregator(BCLA) is proposed to provide a reliable estimation of label aggregation while accurately infer the precision and bias of each algorithm. The BCLA was applied to QT interval (pro-arrhythmic indicator) estimation from the electrocardiogram using labels from the 2006 PhysioNet/Computing in Cardiology Challenge database. It was compared to the mean, median, and a previously proposed Expectation Maximization (EM) label aggregation approaches. While accurately predicting each labelling algorithm's bias and precision, the root-mean-square error of the BCLA was 11.78±\pm0.63ms, significantly outperforming the best Challenge entry (15.37±\pm2.13ms) as well as the EM, mean, and median voting strategies (14.76±\pm0.52ms, 17.61±\pm0.55ms, and 14.43±\pm0.57ms respectively with p<0.0001p<0.0001)

    pyPPG: A Python toolbox for comprehensive photoplethysmography signal analysis

    Full text link
    Photoplethysmography is a non-invasive optical technique that measures changes in blood volume within tissues. It is commonly and increasingly used for in a variety of research and clinical application to assess vascular dynamics and physiological parameters. Yet, contrary to heart rate variability measures, a field which has seen the development of stable standards and advanced toolboxes and software, no such standards and open tools exist for continuous photoplethysmogram (PPG) analysis. Consequently, the primary objective of this research was to identify, standardize, implement and validate key digital PPG biomarkers. This work describes the creation of a standard Python toolbox, denoted pyPPG, for long-term continuous PPG time series analysis recorded using a standard finger-based transmission pulse oximeter. The improved PPG peak detector had an F1-score of 88.19% for the state-of-the-art benchmark when evaluated on 2,054 adult polysomnography recordings totaling over 91 million reference beats. This algorithm outperformed the open-source original Matlab implementation by ~5% when benchmarked on a subset of 100 randomly selected MESA recordings. More than 3,000 fiducial points were manually annotated by two annotators in order to validate the fiducial points detector. The detector consistently demonstrated high performance, with a mean absolute error of less than 10 ms for all fiducial points. Based on these fiducial points, pyPPG engineers a set of 74 PPG biomarkers. Studying the PPG time series variability using pyPPG can enhance our understanding of the manifestations and etiology of diseases. This toolbox can also be used for biomarker engineering in training data-driven models. pyPPG is available on physiozoo.orgComment: The manuscript was submitted to "Physiological Measurement" on September 5, 202

    Robust peak detection for photoplethysmography signal analysis

    Full text link
    Efficient and accurate evaluation of long-term photoplethysmography (PPG) recordings is essential for both clinical assessments and consumer products. In 2021, the top opensource peak detectors were benchmarked on the Multi-Ethnic Study of Atherosclerosis (MESA) database consisting of polysomnography (PSG) recordings and continuous sleep PPG data, where the Automatic Beat Detector (Aboy) had the best accuracy. This work presents Aboy++, an improved version of the original Aboy beat detector. The algorithm was evaluated on 100 adult PPG recordings from the MESA database, which contains more than 4.25 million reference beats. Aboy++ achieved an F1-score of 85.5%, compared to 80.99% for the original Aboy peak detector. On average, Aboy++ processed a 1 hour-long recording in less than 2 seconds. This is compared to 115 seconds (i.e., over 57-times longer) for the open-source implementation of the original Aboy peak detector. This study demonstrated the importance of developing robust algorithms like Aboy++ to improve PPG data analysis and clinical outcomes. Overall, Aboy++ is a reliable tool for evaluating long-term wearable PPG measurements in clinical and consumer contexts.Comment: 4 pages, 1 figure, 50th Computing in Cardiology conference in Atlanta, Georgia, USA on 1st - 4th October 202

    Case Study: Fetal Breathing Movements as a Proxy for Fetal Lung Maturity Estimation

    Full text link
    Premature births can lead to complications, with fetal lung immaturity being a primary concern. Currently, fetal lung maturity (FLM) requires an invasive surfactant extraction procedure between the 32nd and 39th weeks of pregnancy. Unfortunately, there is no non-invasive method for FLM assessment. This work hypothesized that fetal breathing movement (FBM) and surfactant levels are inversely coupled and that FBM can serve as a proxy for FLM estimation. To investigate the correlation between FBM and FLM, antenatal corticosteroid (ACS) was administered to increase fetal pulmonary surfactant levels in a high-risk 35th-week pregnant woman showing intrauterine growth restriction. Synchronous sonographic and phonographic measurements were continuously recorded for 25 minutes before and after the ASC treatments. Before the ACS injection, 268 continuous movements FBM episodes were recorded. The number of continuous FBM episodes significantly decreased to 3, 43, and 79 within 24, 48, and 72 hours, respectively, of the first injection of ACS, suggesting an inversely coupled connection between FBM and surfactant level s. Therefore, FBM may serve as a proxy for FLM estimation. Quantitative confirmation of these findings would suggest that FBM measurements could be used as a non-invasive and widely accessible FLM-assessment tool for high-risk pregnancies and routine examinations.Comment: 4 pages, 3 figures, 50th Computing in Cardiology conference in Atlanta, Georgia, USA on 1st - 4th October 202

    On Merging Feature Engineering and Deep Learning for Diagnosis, Risk-Prediction and Age Estimation Based on the 12-Lead ECG

    Full text link
    Objective: Machine learning techniques have been used extensively for 12-lead electrocardiogram (ECG) analysis. For physiological time series, deep learning (DL) superiority to feature engineering (FE) approaches based on domain knowledge is still an open question. Moreover, it remains unclear whether combining DL with FE may improve performance. Methods: We considered three tasks intending to address these research gaps: cardiac arrhythmia diagnosis (multiclass-multilabel classification), atrial fibrillation risk prediction (binary classification), and age estimation (regression). We used an overall dataset of 2.3M 12-lead ECG recordings to train the following models for each task: i) a random forest taking the FE as input was trained as a classical machine learning approach; ii) an end-to-end DL model; and iii) a merged model of FE+DL. Results: FE yielded comparable results to DL while necessitating significantly less data for the two classification tasks and it was outperformed by DL for the regression task. For all tasks, merging FE with DL did not improve performance over DL alone. Conclusion: We found that for traditional 12-lead ECG based diagnosis tasks DL did not yield a meaningful improvement over FE, while it improved significantly the nontraditional regression task. We also found that combining FE with DL did not improve over DL alone which suggests that the FE were redundant with the features learned by DL. Significance: Our findings provides important recommendations on what machine learning strategy and data regime to chose with respect to the task at hand for the development of new machine learning models based on the 12-lead ECG

    PhysioZoo: The Open Digital Physiological Biomarkers Resource

    Full text link
    PhysioZoo is a collaborative platform designed for the analysis of continuous physiological time series. The platform currently comprises four modules, each consisting of a library, a user interface, and a set of tutorials: (1) PhysioZoo HRV, dedicated to studying heart rate variability (HRV) in humans and other mammals; (2) PhysioZoo SPO2, which focuses on the analysis of digital oximetry biomarkers (OBM) using continuous oximetry (SpO2) measurements from humans; (3) PhysioZoo ECG, dedicated to the analysis of electrocardiogram (ECG) time series; (4) PhysioZoo PPG, designed to study photoplethysmography (PPG) time series. In this proceeding, we introduce the PhysioZoo platform as an open resource for digital physiological biomarkers engineering, facilitating streamlined analysis and data visualization of physiological time series while ensuring the reproducibility of published experiments. We welcome researchers to contribute new libraries for the analysis of various physiological time series, such as electroencephalography, blood pressure, and phonocardiography. You can access the resource at physiozoo.com. We encourage researchers to explore and utilize this platform to advance their studies in the field of continuous physiological time-series analysis.Comment: 4 pages, 2 figure, 50th Computing in Cardiology conference in Atlanta, Georgia, USA on 1st - 4th October 202

    PhysioZoo: A Novel Open Access Platform for Heart Rate Variability Analysis of Mammalian Electrocardiographic Data

    Get PDF
    Background: The time variation between consecutive heartbeats is commonly referred to as heart rate variability (HRV). Loss of complexity in HRV has been documented in several cardiovascular diseases and has been associated with an increase in morbidity and mortality. However, the mechanisms that control HRV are not well understood. Animal experiments are the key to investigating this question. However, to date, there are no standard open source tools for HRV analysis of mammalian electrocardiogram (ECG) data and no centralized public databases for researchers to access.Methods: We created an open source software solution specifically designed for HRV analysis from ECG data of multiple mammals, including humans. We also created a set of public databases of mammalian ECG signals (dog, rabbit and mouse) with manually corrected R-peaks (&gt;170,000 annotations) and signal quality annotations. The platform (software and databases) is called PhysioZoo.Results: PhysioZoo makes it possible to load ECG data and perform very accurate R-peak detection (F1 &gt; 98%). It also allows the user to manually correct the R-peak locations and annotate low signal quality of the underlying ECG. PhysioZoo implements state of the art HRV measures adapted for different mammals (dogs, rabbits, and mice) and allows easy export of all computed measures together with standard data representation figures. PhysioZoo provides databases and standard ranges for all HRV measures computed on healthy, conscious humans, dogs, rabbits, and mice at rest. Study of these measures across different mammals can provide new insights into the complexity of heart rate dynamics across species.Conclusion: PhysioZoo enables the standardization and reproducibility of HRV analysis in mammalian models through its open source code, freely available software, and open access databases. PhysioZoo will support and enable new investigations in mammalian HRV research. The source code and software are available on www.physiozoo.com
    corecore